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Intro to path analysis 

 

Sources.  This discussion draws heavily from Otis Dudley Duncan’s Introduction to Structural 

Equation Models. 

Overview.  Our theories often lead us to be interested in how a series of variables are 

interrelated.  It is therefore often desirable to develop a system of equations, i.e. a model, which 

specifies all the causal linkages between variables.For example, status attainment research asks 

how family background, educational attainment and other variables produce socio-economic 

status in later life.  Here is one of the early status attainment models (see Hauser, Tsai, Sewell 

1983 for a discussion): 

 

 

Among the many implications of this model are that Parents’ Socio-Economic Status (X7) 

indirectly affects the Educational Attainment (X2) and Occupational Aspirations (X3) of 

children.  These, in turn, directly affect children’s Occupational Attainment (X1). In other words, 

higher parental SES helps children to become better educated and gives them higher occupational 

aspirations, which in turn leads to greater occupational achievement.  Our earlier discussion of 

the Logic of Causal Order, combined with the current discussion of Path Analysis, can help us 

better understand how models such as the above work. 

Review of key lessons from the logic of causal order.  In the logic of causal order, we 

learned that the correlation between two variables says little about the causal relationship 

between them.  This is because the correlation between two variables can be due to 
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 the direct effect of one variable on another 

 indirect effects; one variable affects another variable which in turn affects a third 

 common causes, e.g. X affects both Y and Z.  This is spurious association 

 correlated causes, e.g. X is a cause of Z and X is correlated with Y 

 reciprocal causation; each variable is a cause of the other 

Hence, a correlation can reflect many non-causal influences.  Further, a correlation can’t tell you 

anything about the direction of causality. 

At the same time, only looking at the direct effect of one variable on another may also not be 

optimal.  Direct effects tell you how a 1 unit change in X will affect Y, holding all other variables 

constant.  However, it may be that other variables are not likely to remain constant if X changes, 

e.g. a change in X can produce a change in Z which in turn produces a change in Y.  Put another 

way, both the direct and indirect effects of X on Y must be considered if we want to know what 

effect a change in X will have on Y, i.e. we want to know the total effects (direct + indirect). 

We have done all this conceptually.  Now, we will see how, using path analysis, this is done 

mathematically and statistically.  We will show how the correlation between two variables can be 

decomposed into its component parts, i.e. we will show how much of a correlation is due to 

direct effects, indirect effects, common causes and correlated causes.  We will further show how 

each of the structural effects in a model affects the correlations in the model. 

Path analysis terminology.  Consider the following diagram: 

X1

X2

X3

X4

u

v

w

 

In this diagram, 

 X1 is an exogenous variable.  Exogenous variables are those variables whose causes are not 

explicitly represented in the model.  Exogenous variables are causally prior to all dependent 

variables in the model.  There is no causal ordering of the exogenous variables.  There can be 

more than one exogenous variable in a model.  For example, if there was a 2-headed arrow 

linking X1 and X2 instead of a 1-headed arrow, then X1 and X2 would both be exogenous. 

 Conversely, X2, X3, and X4 are endogenous variables.  The causes of endogenous variables 

are specified in the model. 

 Exogenous variables must always be independent variables.  However, endogenous variables 

can be either dependent or independent.  For example, X1 is a cause of X2, but X2 is itself a 

cause of X3 and X4. 
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 u, v, and w are disturbances, or, if you prefer, the residual terms. Many notations are used for 

disturbances; indeed, sometimes no notation is used at all, there is just an arrow coming in 

from out of nowhere.  2, 3, and 4 would also be a good notation, given our past practices. 

 The one way arrows represent the direct causal effects in the model, also known as the 

structural effects.  Sometimes, the names for these effects are specifically labeled, but other 

times they are left implicit.  The structural equations in the above diagram can be written as 

X X u

X X X v

X X X X w

2 21 1

3 31 1 32 2

4 41 1 42 2 43 3

 

  

   



 

  

 

 Note that we use 2 subscripts for each structural effect.  The first subscript stands for the DV, 

the second stands for the IV.  When there are multiple equations, this kind of notation is 

necessary to keep things straight.  Note, too, that intercepts are not included.  Discussions of 

path analysis are simplified by assuming that all variables are “centered,” i.e. the mean of the 

variable has been subtracted from each case.  Finally, note that the paths linking the 

disturbances to their respective variables are set equal to 1. 

 In the above example, each IV was affected by all the other predetermined variables, i.e. 

those variables which are causally prior to it.  We refer to such a model as being fully 

recursive, for reasons we will explain later.  There is no requirement that each IV be affected 

by all the predetermined variables, of course.  For example, 43 could equal zero, in which 

case that path would be deleted from the model.  Indeed, it is fairly easy to include paths in a 

model; the theoretically difficult part is deciding which paths to leave out. 

 

Determining correlations and coefficients in a path model using standardized variables.  
We will now start to examine the mathematics behind a path model.  For convenience, WE 

WILL ASSUME THAT ALL VARIABLES HAVE A MEAN OF 0 AND A VARIANCE OF 1, 

i.e. are standardized.  This makes the math easier, and it is easy enough later on to go back to 

unstandardized variables.  Recall that, when variables are standardized, 

E(X1
2
) = V(X1) = 1,  

E(X1X2) = COV(X1,X2) = 12 (where 12 is the population counterpart to the sample estimate r12) 

Also, we assume (at least for now) that the disturbance in an equation is uncorrelated with any of 

the IVs in the equation. (Note, however, that the disturbance in each equation has a nonzero 

correlation with the dependent variable in that equation and (in general) with the dependent 

variable in each “later” equation.) 

Keeping the above in mind, if we know the structural parameters, it is fairly easy to compute the 

underlying correlations.  Perhaps more importantly, it is possible to decompose the correlation 

between two variables into the sources of association noted above, e.g. correlation due to direct 

effects, correlation due to indirect effects, etc.  And, of course, if we know the correlations, we 

can compute the structural parameters, although this is somewhat harder to do by hand. 
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There are a couple of ways of doing this.  The first, Sewell Wright’s rule, is very diagram-

oriented and is perhaps more intuitive to most people once you understand it.  The normal 

equations approach is more mathematical; while perhaps less intuitive, it is less prone to 

mistakes.  I find that using both together is often helpful. 

Sewell Wright’s multiplication rule:  To find the correlation between Xh and Xj, where Xj 

appears “later” in the model,  

 begin at Xj and read back to Xh along each distinct direct and indirect (compound) path, 

forming the product of the coefficients along that path.  (This will give you the correlation 

between Xj and Xh that is due to the direct and indirect effects of Xh on Xj) 

 After reading back, read forward (if necessary), but only one reversal from back to forward is 

permitted.  (This will give you correlation that is due to common causes.) 

 A double-headed arrow may be read either forward or backward, but you can only pass 

through 1 double-headed arrow  on each transit.  (This will give you correlation due to 

correlated causes) 

 If you pass through a variable, you may not return to it on that transit.   

 Sum the products obtained for all the linkages between Xj and Xh.  (The main trick to using 

Wright’s rule is to make sure you don’t miss any linkages, count linkages twice, or make 

illegal double reversals.)  This will give you the total correlation between the 2 variables. 

Normal equations.  To get the normal equations, each structural equation is multiplied by its 

predetermined variables, and then expectations are taken.  If the structural parameters are known, 

simple algebra then yields the correlations.  We’ll show how to use normal equations in the more 

complicated example. 

To illustrate path analysis principles, we’ll first go over a generic and complicated example.  

We’ll then present a fairly simple substantive (albeit hypothetical) example similar to what we’ve 

discussed before.   

 

Generic, Complicated Example (pretty much stolen from Duncan).  We will illustrate both 

the Wright rule and the use of normal equations for each of the 3 structural equations in the 

model presented earlier: 

X1

X2

X3

X4

u

v

w
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(1) X2.  For X2, the structural equation is 

X X u2 21 1   

The only predetermined variable is X1.  Hence, if we multiply both sides of the above equation 

by X1 and then take expectations, we get the normal equation 

2121

1

2

12121 )()()(







 uXEXEXXE
 

NOTE: How did we get from the structural equation to the normal equation?  First, we multiplied both 

sides of the structural equation by X1, and then we took the expectations of both sides, i.e. 

2121

1

2

12121

1

2

12121

1212

)()()(

















uXEXEXXE

uXXXX

uXX

 

Again, remember that when variables are standardized,  E(X1
2
) = 1 and E(X1X2) = 12 (where 12 is the 

population counterpart to the sample estimate r12).  Also remember that we are assuming that the 

disturbance in an equation is uncorrelated with any of the IVs in the equation, ergo E(X1u) = 0. 

Hence, as we have seen before, in a bivariate regression, the correlation is the same as the 

standardized regression coefficient.  Also, all of the correlation between X1 and X2 is causal. 

X1

X2

X3

X4

u

v

w

 

SW Rule: Go back from X2 to X1. 

(2) X3.  For X3, the structural equation is 

X X X v3 31 1 32 2     

There are two predetermined variables, X1 and X2.  Taking each in turn, the normal equations 

are 

213231

12323113

12132

2

13131 )()()()(











 vXEXXEXEXXE

 

(Remember that 21 = 12).  As the above makes clear, there are two sources of correlation 

between X1 and X3:   
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(a) There is a direct effect of X1 on X3 (represented in 31) 

X1

X2

X3

X4

u

v

w

 

SW Rule: Go back from X3 to X1. 

(b) An indirect effect of X1 operating through X2 (reflected by 3221).  All of the 

association between X1 and X3 is causal. 

X1

X2

X3

X4

u

v

w

 

SW Rule: Go back from X3 to X2, and then back from X2 to X1. 

NOTE: Recall that the sum of a variable’s direct effect and its indirect effects is known as its 

total effect.  So, in this case, the total effect of X1 on X3 is 213231   . 

Doing the same thing for X2 and X3, we get 

322131

32123123

2

2

232213132 )()()()(











 vXEXEXXEXXE

 

Again, as the above makes clear, there are two sources of correlation between X2 and X3:   

(a) There is a direct effect of X2 on X3 (represented in 32).  

X1

X2

X3

X4

u

v

w

 

SW Rule: Go back from X3 to X2. 
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(b) But, there is also correlation due to a common cause, X1 (reflected by 3121).  Hence, 

part of the correlation between X2 and X3 is spurious. 

X1

X2

X3

X4

u

v

w

 

SW Rule: Go back from X3 to X1, go forward from X1 to X2. 

 

(3) X4.  For X4, the predetermined variables are X1, X2, and X3.  The structural equation is 

X X X X w4 41 1 42 2 43 3       

The normal equations are, first, for X1, 

2132433143214241

21323143214241

134312424141

131432142

2

14141
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




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
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

 wXEXXEXXEXEXXE

 

This shows there are 4 sources of association between X1 and X4: 

 (a) Association due to the direct effect of X1 on X4 (41) 

X1

X2

X3

X4

u

v

w

 

SW Rule: Go back from X4 to X1. 
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 (b) Association due to an indirect effect: X1 affects X2 which then affects X4 (4221) 

X1

X2

X3

X4

u

v

w

 

SW Rule: Go back from X4 to X2, go back from X2 to X1. 

 

 (c) Association due to another indirect effect: X1 affects X3 which then affects X4 

(4331) 

X1

X2

X3

X4

u

v

w

 

SW Rule: Go back from X4 to X3, go back from X3 to X1. 

 

 (d) Association due to yet another indirect effect: X1 affects X2, which then affects X3, 

which then affects X4 (433221) 

X1

X2

X3

X4

u

v

w

 

SW Rule: Go back from X4 to X3, back from X3 to X2, back from X2 to X1. 

 

Note that you sum (b), (c) and (d) to get the total indirect effect of X1 on X4.  Note too that all of 

the correlation between X1 and X4 is causal. 
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The normal equations for X2 and X4 are 

2131433243422141

21313243422141

234342124142

23243

2

242124142
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)()()()()(


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 wXEXXEXEXXEXXE

 

This shows there are 4 sources of association between X2 and X4: 

 (a) Association due to X1 being a common cause of X2 and X4 (4121) 

X1

X2

X3

X4

u

v

w

 

SW Rule: GO back from X4 to X1, go forward from X1 to X2. 

 

 (b) Association due to the direct effect of X2 on X4 (42) 

X1

X2

X3

X4

u

v

w

 

SW Rule: Go back from X4 to X2. 

 (c) Association due to the indirect effect of X2 affecting X3 which in turn affects X4 

(4332) 

X1

X2

X3

X4

u

v

w

 

SW Rule: Go back from X4 to X3, go back from X3 to X2. 
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 (d) Association due to X1 being a common cause of X2 and X4: X1 directly affects X2 

and indirectly affects X4 through X3 (433121). 

X1

X2

X3

X4

u

v

w

 

SW Rule: Go back from X4 to X3, back from X3 to X1, forward from X1 to X2. 

Note that you sum (a) and (d) to get the correlation due to common causes.  This represents 

spurious association, while (b) + (c) represents causal association. 

 

The normal equations for X3 and X4 are, 

4321314232422132413141

432131324221323141

432342134143

3

2
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


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This shows there are 5 sources of association between X3 and X4: 

 (a) Association due to X1 being a common cause of X3 and X4 (4131) 

X1

X2

X3

X4

u

v

w

 

SW Rule: Go back from X4 to X1, go forward from X1 to X3. 
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 (b) Association due to X1 being a common cause of X3 (by first affecting X2, which in 

turn affects X3) and X4 (4121 32) 

X1

X2

X3

X4

u

v

w

 

    SW rule: Go back from X4 to X1, forward from X1 to X2, forward from X2 to X3. 

 (c) Association due to X2 being a common cause of X3 and X4 (4232) 

X1

X2

X3

X4

u

v

w

 

SW Rule: Back from X4 to X2, go forward from X2 to X3. 

 

 (d) Association due to X1 being a common cause of X3 and X4: X1 directly affects X3 

and indirectly affects X4 through X2 (422131). 

X1

X2

X3

X4

u

v

w

 

SW Rule: Go back from X4 to X2, back from X2 to X1, forward from X1 to X3. 
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 (e) Association due to X3 being a direct cause of X4 (43) 

X1

X2

X3

X4

u

v

w

 

SW Rule: Go back from X4 to X3. 

Note that you sum (a),  (b) (c) and (d) to get the correlation due to common causes.  This is the 

spurious association.  There are no indirect effects of X3 on X4. 

 

In reviewing the above, note that, if there are no double-headed arrows in the model 

 If you go back once and then stop, it is a direct effect 

 If you go back 2 or more times and never come forward, it is an indirect effect 

 If you go back and later come forward, it is correlation due to a common cause 

 

Correlated causes.  Suppose that, in the above model, X1 and X2 were both exogenous, i.e. 

there was a double-headed arrow between them instead of a 1-way arrow.  This would not have 

any significant effect on the math, but it would affect our interpretation of the sources of 

correlation.  Anything involving 12 would then have to be interpreted as correlation due to 

correlated causes.  Further, we could not always say what effect changes in X1 would have on 

other variables, since we wouldn’t know whether changes in X1 would also produce changes in 

X2 (unless we have good reasons for believing that that couldn’t be the case, e.g. gender and race 

might both be exogeneous variables in a model, but we are pretty confident that changes in one 

are not going to produce changes in the other.).  That is, with two-headed arrows we often can’t 

be sure what the indirect effects are, which also means that we can’t be sure what the total effects 

are.  Ergo, the fewer 2-headed arrows in a model, the more powerful the model is in terms of the 

statements it makes. 

For example: 

X1

X2

X3

X4

v

w

 

Instead of X1 and X3 being correlated because of the indirect effect of X1 affecting X2 which in 

turn affects X3 (which is a causal relationship) X1 and X3 are correlated because of the 
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correlated causes of X1 and X2 (which we do not assume to be causal), i.e. X1 is correlated with 

a cause of X3. 

Or, 

X1

X2

X3

X4

v

w

 

Instead of X2 and X3 being correlated because they share a common cause, they are correlated 

because of a correlated cause, i.e. X1 is a cause of X3 and X2 is correlated with X1.   

 

SUBSTANTIVE HYPOTHETICAL EXAMPLE (Adapted From the 1995 Soc 593 Exam 2): 

A demographer believes that the following model describes the relationship between Income, 

Health of the Mother, Use of Infant formula, and Infant deaths.  All variables are in standardized 

form.  The hypothesized value of each path is included in the diagram. 

 

Income

Mother's  Health

Infant Formula Usage

Infant Deaths

u

v

w
.7 -.8

-.5

-.8

 

 

 a. Write out the structural equation for each endogenous variable. 

wIFMHwIFMHID

vMHvMHIF

uIncomeuIncomeMH

IFIDMHID

MHIf

IncMH







*5.*8.**

*8.

*7.

,,

,

,







 

 b. Determine the complete correlation matrix. (Remember, variables are 

standardized.  You can use either normal equations or Sewell Wright, but you might want to use 

both as a double-check.) 
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Correlation Sewell-Wright Approach 

rmh,inc = .7 

 

Go back from Mother’s health to Income.  (Direct effect of 
Income on MH) 

rif,MH = -.8 

 

Go back from IF to MH.  (Direct effect of MH on IF) 

rIF,Inc = -.8 * .7 = -.56 

 

Go back from IF to MH, then back from MH to income.  
(Indirect effect of Income – Income affects mother’s 
health which in turn affects Infant formula usage) 

rid,IF = -.5 + -.8*-.8 = .14 

 

Go back from ID to IF.  (Direct effect of Infant formula on 
infant deaths) 

Then, go back from ID to MH, then go forward from MH to 
IF.  (Mother’s health is a common cause of both Infant 
formula usage and infant deaths) 

Note that, even though the direct effect of infant formula 
usage on infant deaths is negative (which means that 
using formula reduces infant deaths) the correlation 
between infant formula usage and infant deaths is 
positive (which means that those who use formula are 
more likely to experience infant deaths).  We discuss this 
further below. 

rid,MH = -.8 + -.8*-.5 = -.4 

 

Go back from ID to MH.  (Direct effect of Mother’s Health 
on Infant deaths) 

Then, go back from ID to IF to MH. (Indirect effect of 
Mother’s health on infant deaths – Mother’s health affects 
infant formula usage which in turn affects infant deaths) 

rid,INC = -.8*.7 + -.5*-.8*.7 = 
-.28 

 

Go back from Infant Death to Mother’s Health, then back 
to Income.  (Income is an indirect cause of Infant deaths 
– Income affects mother’s health which in turn affects 
infant deaths.) 

Then go back from Infant deaths, then back to Mother’s 
Health, then back to Income.  (Income is yet again an 
indirect cause – Income affects Mother’s Health, which 
affects Infant Formula Usage, which affects Infant 
Deaths.) 
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 c. Decompose the correlation between Infant deaths and Usage of Infant formula 

into 

 Correlation due to direct effects 

-.5 (see path from IF to ID) 

 Correlation due to common causes 

-.8 * -.8 = .64 (Mother’s health is a cause of both IF and ID) 

 d. Suppose the above model is correct, but instead the researcher believed in and 

estimated the following model: 

Infant Formula Usage Infant Deaths w  

What conclusions would the researcher likely draw?  Why would he make these mistakes?  

Discuss the consequences of this mis-specification. 

The correlation between IF and ID is positive, hence, if the above model was estimated, 
the expected value of the coefficient would be .14.  This would imply that infant formula 
usage increases infant deaths, when in reality the correct model shows that it 
decreases them.  The correlation is positive because of the common cause of Mother’s 
health: less healthy mothers are more likely to use infant formula, and they are also 
more likely to have higher infant death rates.  Belief in the above model could lead to a 
reduction in infant formula usage, which would have exactly the opposite effect of what 
was intended. 
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Appendix: Verifying answers with Stata and SPSS 

Stata.  We can use Stata to verify we have calculated the correlations correctly.  Just give Stata 

the correlations we computed by hand and then run the various regressions.  If we’ve done 

everything right, the regression parameters should come out the same as in the path diagram.  

Remember, this is easier if you use the “input matrix by hand” submenu.  (Click Data/ Matrices / 

Input matrix by hand.)  

. matrix input Corr = (1,.7,-.56,-.28\.7,1,-.80,-.40\-.56,-.80,1,.14\-.28,-.40,.14,1) 

. matrix input SDs = (1,1,1,1) 

. matrix input Means = (0,0,0,0) 

. corr2data income mhealth formula death, corr(Corr) mean(Means) sd(SDs) n(100) 

(obs 100) 

 

. reg  mhealth income 

 

      Source |       SS       df       MS              Number of obs =     100 

-------------+------------------------------           F(  1,    98) =   94.16 

       Model |  48.5099991     1  48.5099991           Prob > F      =  0.0000 

    Residual |  50.4899995    98  .515204077           R-squared     =  0.4900 

-------------+------------------------------           Adj R-squared =  0.4848 

       Total |  98.9999987    99  .999999986           Root MSE      =  .71778 

 

------------------------------------------------------------------------------ 

     mhealth |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      income |         .7   .0721393     9.70   0.000     .5568419    .8431581 

       _cons |   6.41e-10   .0717777     0.00   1.000    -.1424405    .1424405 

------------------------------------------------------------------------------ 

 

. reg  formula  income mhealth 

 

      Source |       SS       df       MS              Number of obs =     100 

-------------+------------------------------           F(  2,    97) =   86.22 

       Model |  63.3600001     2       31.68           Prob > F      =  0.0000 

    Residual |       35.64    97  .367422681           R-squared     =  0.6400 

-------------+------------------------------           Adj R-squared =  0.6326 

       Total |  99.0000001    99           1           Root MSE      =  .60615 

 

------------------------------------------------------------------------------ 

     formula |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      income |   4.93e-09   .0853061     0.00   1.000    -.1693091    .1693091 

     mhealth |        -.8   .0853061    -9.38   0.000    -.9693091   -.6306909 

       _cons |  -2.31e-09   .0606154    -0.00   1.000    -.1203048    .1203048 

------------------------------------------------------------------------------ 
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. reg  death income mhealth formula 

 

      Source |       SS       df       MS              Number of obs =     100 

-------------+------------------------------           F(  3,    96) =   10.67 

       Model |   24.749999     3  8.24999966           Prob > F      =  0.0000 

    Residual |  74.2500011    96  .773437511           R-squared     =  0.2500 

-------------+------------------------------           Adj R-squared =  0.2266 

       Total |  99.0000001    99           1           Root MSE      =  .87945 

 

------------------------------------------------------------------------------ 

       death |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      income |   1.63e-09   .1237684     0.00   1.000    -.2456784    .2456784 

     mhealth |        -.8   .1709021    -4.68   0.000    -1.139238   -.4607621 

     formula |        -.5   .1473139    -3.39   0.001    -.7924158   -.2075842 

       _cons |  -6.54e-09   .0879453    -0.00   1.000      -.17457      .17457 

------------------------------------------------------------------------------ 

 

. * The mis-specified model 

. reg  death formula 

 

      Source |       SS       df       MS              Number of obs =     100 

-------------+------------------------------           F(  1,    98) =    1.96 

       Model |  1.94039993     1  1.94039993           Prob > F      =  0.1648 

    Residual |  97.0596001    98  .990404083           R-squared     =  0.0196 

-------------+------------------------------           Adj R-squared =  0.0096 

       Total |  99.0000001    99           1           Root MSE      =  .99519 

 

------------------------------------------------------------------------------ 

       death |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

     formula |        .14   .1000204     1.40   0.165    -.0584872    .3384872 

       _cons |  -5.23e-09    .099519    -0.00   1.000    -.1974923    .1974923 

------------------------------------------------------------------------------ 

 

SPSS.  We can also use SPSS to verify we have calculated the correlations correctly.   

MATRIX DATA VARIABLES = Income MHealth Formula Death/ FORMAT = FREE lower 

                        /FILE = INLINE / N = 100 

                        /CONTENTS = CORR Mean Stddev. 

BEGIN DATA. 

   1.00 

    .70     1.00 

   -.56     -.80   1.00 

   -.28     -.40    .14  1.00 

      0         0       0       0 

      1         1       1       1 

END DATA. 

 

* Mhealth Dependent. 

REGRESSION   matrix = in(*) 

            /VARIABLES Income MHealth Formula Death 

            /dependent MHealth 

            /method enter Income. 

 

Regression 
Coefficientsa

.000 .072 .000 1.000

.700 .072 .700 9.703 .000

(Constant)

INCOME

Model

1

B Std. Error

Unstandardized

Coefficients

Beta

Standardized

Coefficients

t Sig.

Dependent Variable: MHEALTHa. 
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* Formula dependent. 

REGRESSION   matrix = in(*) 

            /VARIABLES Income MHealth Formula Death 

            /dependent Formula 

            /method enter Income MHealth. 

 

Regression 

 
Coefficientsa

.000 .061 .000 1.000

.000 .085 .000 .000 1.000

-.800 .085 -.800 -9.378 .000

(Constant)

INCOME

MHEALTH

Model

1

B Std. Error

Unstandardized

Coefficients

Beta

Standardized

Coefficients

t Sig.

Dependent Variable: FORMULAa. 

 
 
* Death dependent. 

REGRESSION   matrix = in(*) 

            /VARIABLES Income MHealth Formula Death 

            /dependent Death 

            /method enter  Income MHealth Formula. 

 

Regression 

 
Coefficientsa

.000 .088 .000 1.000

.000 .124 .000 .000 1.000

-.800 .171 -.800 -4.681 .000

-.500 .147 -.500 -3.394 .001

(Constant)

INCOME

MHEALTH

FORMULA

Model

1

B Std. Error

Unstandardized

Coefficients

Beta

Standardized

Coefficients

t Sig.

Dependent Variable: DEATHa. 

 
 
* Mis-specified Death model -- Mother's Health omitted. 

REGRESSION   matrix = in(*) 

            /VARIABLES Income MHealth Formula Death 

            /dependent Death 

            /method enter  Formula. 

 

Regression 
Coefficientsa

.000 .100 .000 1.000

.140 .100 .140 1.400 .165

(Constant)

FORMULA

Model

1

B Std. Error

Unstandardized

Coefficients

Beta

Standardized

Coefficients

t Sig.

Dependent Variable: DEATHa. 
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